Chiral multidentate oxazoline ligands based on cyclophosphazene cores: synthesis, characterization and complexation studies.

نویسندگان

  • Dheeraj Kumar
  • Jatinder Singh
  • Anil J Elias
چکیده

Chiral oxazoline based bi and hexadentate ligands built on cyclophosphazene cores have been synthesized and characterized. (NPPh2)2[NP(m-OC6H4C(O)OCH3)2] (1) was prepared by the reaction of gem-(NPPh2)2(NPCl2) with methyl-3-hydroxy benzoate in the presence of Cs2CO3. Compound 1 was converted to the dicarboxylic acid (NPPh2)2[NP(m-OC6H4C(O)OH)2] (2) by base promoted hydrolysis with KO(t-Bu). The dicarboxylic acid 2 on reaction with oxalyl chloride followed by (S)-(+)-2-amino-3-methyl-1-butanol, triethylamine and mesyl chloride was converted to the C2-symmetric phosphazene based chiral bisoxazoline ligand (NPPh2)2[NP{m-OC6H4(4-iPr-2-Ox)}2] (3) (Ox = oxazolinyl). A similar C2-symmetric bisoxazoline derivative having an oxazoline group attached to the para position of the phenyl ring was also synthesized starting from (NPPh2)2[NP(p-OC6H4C(O)OCH3)2] (4) which was first converted to the dicarboxylic acid (NPPh2)2[NP(p-OC6H4C(O)OH)2] (5) and finally to (NPPh2)2[NP{p-OC6H4(4-iPr-2-Ox)}2] (6) and (NPPh2)2[NP{p-OC6H4(4-Ph-2-Ox)}2] (7) under similar reaction conditions. Reaction of 6 with Pd(OAc)2 in acetic acid at room temperature and with PdCl2(C6H5CN)2 in refluxing benzene resulted in chiral palladium complexes Pd(OAc)2(NPPh2)2[NP{p-OC6H4(4-iPr-2-Ox)}2] (8) and PdCl2(NPPh2)2[NP{p-OC6H4(4-iPr-2-Ox)}2] (9), respectively. The utility of these palladium complexes as chiral catalysts for the asymmetric rearrangement of trichloroacetimidates to trichloroacetamides has been explored. The hexa(methylbenzoate) derivative of cyclophosphazene [PN(OC6H4COOCH3)2]3 (10) on treatment with KO(t-Bu) and H2O gave the hexacarboxylic acid derivative [PN(OC6H4COOH)2]3 (11), which on treatment with oxalyl chloride followed by (S)-(+)-2-amino-3-methyl-1-butanol/(S)-(+)-2-phenylglycinol, triethylamine and mesyl chloride was converted to the C3-symmetric cyclophosphazene based chiral hexaoxazoline ligands [PN{OC6H4(4-iPr-2-Ox)}2]3 (12) and [PN{OC6H4(4-Ph-2-Ox)}2]3 (13). The bis(phebox) derivative of the cyclophosphazene was prepared starting from (NPPh2)2[NP{OC6H3(COOCH3)2}2] (14), by the reaction of gem-Ph4P3N3Cl2 with dimethyl 5-hydroxyisophthalate in the presence of Cs2CO3. Compound 14 was converted to the tetracarboxylic acid (NPPh2)2[NP{OC6H3(COOH)2}2] (15) by base promoted hydrolysis with KO(t-Bu). The tetracarboxylic acid 15 on reaction with oxalyl chloride followed by (S)-(+)-2-amino-3-methyl-1-butanol/(S)-(+)-2-phenylglycinol, triethylamine and mesyl chloride was converted to the bis(phebox) substituted tetraphenylcyclophosphazene derivatives (NPPh2)2[NP{OC6H3(4-iPr-2-Ox)2}2] (16)/(NPPh2)2[NP{OC6H3(4-Ph-2-Ox)2}2] (17). A similar tetra(phebox) derivative was synthesized from (NPPh2)[NP{OC6H3(COOCH3)2}2]2 (18) which was first converted to (NPPh2)[NP{OC6H3(COOH)2}2]2 (19) and further converted to the tetra(phebox) derivative (NPPh2) [NP{OC6H3(4-Ph-2-Ox)2}2]2 (20). All new compounds were characterized by IR, NMR [(1)H, (13)C{(1)H} and (31)P{(1)H}] and HRMS studies. Compounds 1, 2, 4, 5, 7, 14 and 18 have also been structurally characterized.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modular syntheses of multidentate ligands with variable N-donors: applications to tri- and tetracopper(I) complexes.

A general method for the preparation of multidentate ligands comprised of a multi-imine platform derived from 1,1,1-tris(aminomethyl)ethane or tris(aminoethyl)amine connected to bi- and tridentate N-donor chelates has been developed. The feasibility of the method has been demonstrated through the synthesis and characterization of a large set of these ligand types. Complexation to Cu(I) was acco...

متن کامل

Inherently chiral calix[4]arenes via oxazoline directed ortholithiation: synthesis and probe of chiral space

The diastereoselective oxazoline-directed lithiation of calix[4]arenes is reported with diastereoselective ratios of greater than 100:1 in some instances. Notably, it has been found that the opposite diastereomer can be accessed via this approach merely through the choice of an alkyllithium reagent. The inherently chiral oxazoline calix[4]arenes have also been preliminarily examined as ligands ...

متن کامل

Synthesis of novel C2-symmetric chiral bis(oxazoline) ligands and their application in the enantioselective addition of diethylzinc to aldehydes

Novel chiral bis(oxazoline) ligands bearing dibenzo[a,c]cycloheptadiene and a dihydroxy group have been synthesized and their application in the catalytic asymmetric addition of diethylzinc to aldehydes investigated. The enantioselectivities for the aromatic aldehydes are generally high and up to 96% ee was obtained. 2003 Elsevier Ltd. All rights reserved.

متن کامل

Synthesis of axially chiral oxazoline–carbene ligands with an N-naphthyl framework and a study of their coordination with AuCl·SMe2

Axially chiral oxazoline-carbene ligands with an N-naphthyl framework were successfully prepared, and their coordination behavior with AuCl·SMe(2) was also investigated, affording the corresponding Au(I) complexes in moderate to high yields.

متن کامل

ry of an ion - com plexat ion by macrocyclic multidentate Lewis acids

In contrast to the extraordinary achievements of cation complexation in host-guest chemistry, only recently has anion complexation by compounds containing electrondeficient atoms such as boron, mercury, tin and silicon received attention. We here present a new class of carborane-supported macrocyclic multidentate Lewis acid hosts which bind nucleophilic species to form isolable host-guest compl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Dalton transactions

دوره 43 37  شماره 

صفحات  -

تاریخ انتشار 2014